1 PTN的技术特点
PTN(packettransportnetwork,分组传送网)是指针对分组业务流量的突发性和统计复用传送的要求而设置的IP业务和底层光传输媒质之间的一个层面。PTN以分组业务为核心并提供多种业务,同时具备高可用性和可靠性、高效的带宽管理机制和流量工程、便捷的OAM和网管、较高的可扩展性和安全性等。
目前,分组传送标准主要有T-MPLS和PBT2个阵营。T-MPLS基于ITU-TG.805传输网络结构,主要改进包括通过消除IP控制层简化MPLS,以及增加传输网络需要的OAM和管理功能。PBT则源自IEEE802.1ah定义的PBB-TE(运营商骨干网桥接传输技术),它关闭传统以太网的地址学习、地址广播以及STP功能,以太网的转发表完全由管理平面(将来的控制平面)进行控制;具有面向连接的特性,使得以太网业务具有连接性,以便实现保护倒换、OAM、QoS、流量工程等传送网络的功能。总体来说,目前主流PTN设备所实现的技术特点有:
·核心采用分组交换技术,同时集成了二层设备的统计复用、组播等技术,大大提升了带宽利用率;
·采用二层面向连接的先进分组技术,可以基于LSP实现路径和带宽规划、隧道监控和保护等,从而实现流量工程和多业务的QoS传送;
·提供多业务接口;
·采用同步以太网、IEEE1588v2、TOP技术实现时钟传送;
·采用SDH的环网保护技术实现网络的电信级QoS;
·采用业务端到端监控实现网络的可运营、可管理。
从PTN的技术特点可以看出,PTN的高带宽对TDM业务天然的支持能力,为tripleplay(多重播放)业务提供了完善的支持平台,标准OMCI的定义以及电信级的管理平台为其在接入网的大范围应用提供了坚实的基础。
随着数据业务的飞速发展,对数据接入的可移动性要求不断增强,支持高带宽、可移动、无线数据接入的3G系统的部署已经成为不可扭转的趋势。因此,有必要针对3G的发展,研究PTN在3G传送平台的应用,从而为实现PTN在整个传送网络中的大范围覆盖提供坚实的依据。
2 3G传送网的需求
在3G发展过程中,IMT-2000定义的3种主流技术是WCDMA、cdma2000和TD-SCDMA,这3种技术的主要区别在空中接口部分,其余部分的网络逻辑架构基本一致。3G系统主要由无线接入网络和核心网络2大部分组成,如图1所示。无线接入网络主要包括基站和无线网络控制器(RNC/BSC)两类节点,负责提供终端设备和核心网络的连接以及无线资源的管理和调配;核心网络包括电路交换域(CS)和分组交换域(PS),分别用于处理电路交换业务和分组交换业务,主要由MSC、GMSC、SGSN、GGSN等设备组成。在目前的3G系统中,传送平台需要承载的业务主要包括以下2个部分。
·中心节点之间的业务。RNC/BSC与3G核心网络设备通常都安装在中心节点,中心节点之间的网络资源比较丰富,并且业务已经过相应的处理和收敛,一般只需提供透传处理即可。
·基站到RNC/BSC之间的业务。该部分业务是3G传送平台的重点业务,从传送网络的接入层一直覆盖到汇聚/核心层。目前,基站侧的Iub接口一般为E1、FE,RNC/BSC侧的Iub接口一般为STM-1、FE、GE。对于Iub的传输容量,按照目前各3G设备制造商的发展情况来看,对于室外的大型宏基站,一般为3个扇区、3~4个载频的配置,每基站大概需配备3~8个E1或1~2个FE;对于室内小型覆盖系统,一般配置1~3个扇区、1个载频,每基站大概需配备1~2个E1或1~2个FE;考虑HSDPA(highspeeddownlink package access,高速下行分组接入)的应用,下行数据速率将提高5倍左右,相对应,各基站需配备的传输接口容量也需增加5倍左右。而基站到RNC/BSC的业务类型比较丰富,需要保证各种等级业务类型的QoS。
此外,基站的时钟同步也是需要重点关注的方面。3G系统有无线和网络2种同步方式:无线同步主要是基于GPS实现无线基站间和移动终端的同步;网络同步一般采用主从同步方式,时钟参考来自GPS、MSC或PSTN的同步基准信号,用于移动传输设备和交换机的同步,要求接入网络必须有高精准的同步信号提供给各基站作支撑。
综上所述,3G传送平台的需求主要集中在Iub接口、业务QoS保证、传输容量、基站时钟提供、网管平台的实现等几个方面,具体如下。
·Iub接口和业务QoS保证。能同时提供E1、STM-1和FE接入。对于E1、STM-1接入,需严格按照TDM业务进行传送,保证其时延、抖动等性能指标;对于FE接入,需区分各种业务等级,并保证各种业务等级的QoS。
·传输容量。基站容量按片区覆盖进行划分,考虑每个接入片区覆盖10~20个基站。如按15个基站计算,假设其中1/5的基站为宏基站,每个基站需要的带宽为16~20Mbit/s;3/5的基站为中型基站,每个基站需要的带宽为8~10Mbit/s;1/5的基站为微蜂窝站,每个基站需要的带宽为4~5 Mbit/s。15个基站共需带宽约200 Mbit/s。对于将来HSDPA的应用,这种典型组网结构届时每接入片区下行速率将达到850~1 000 Mbit/s。
·基站时钟提供。3G传送网结构复杂,对时钟同步的要求很高。
·网管平台的实现。由于基站机房往往无人值守,因此要求传送设备提供各种网管通道和环境监控功能,从而实现网络设备的可运营、可管理。
3 PTN在3G传送网中的应用
根据前面对PTN技术特点的阐述,可以看出以分组为核心的PTN具有很多天然的技术优势,面对移动运营商即将部署的3G网络,PTN在移动传送网中完全可以找到合理、准确的定位。3.1PTN对3G传送网的适应性
针对3G传送网对业务传送的各种需求,PTN对3G业务传送的适应性是由其系统特性和技术体制决定的。
3.1.1业务接口和容量的提供
PTN设备目前能提供3G系统基站和核心设备所需的各种业务接口,如E1、FE、GE等,在业务接口方面完全满足3G接入平台的需求。
在容量方面,目前PTN设备采用环网结构,一般环上带宽为GE/10GE,大大突破了传统SDH接入环155/622Mbit/s带宽的限制,完全可以满足3G系统现在以及将来HSDPA应用的带宽需求。
3.1.2各种业务的传送
(1)E1业务的传送
对于3G基站目前广泛应用的E1接口,其时延、抖动等性能指标要求满足G.703的相应规定。PTN系统目前一般采用PWE3封装的方式来承载3G的E1业务,TDMPWE3支持非结构化和结构化两种模式,其封装支持MPLS格式。
(2)FE/GE业务的传送
随着3G系统的发展,3G将越来越广泛地采用IP方式来承载业务,在接口方面,则表现为采用FE/GE接口进行业务的传送。
在3G发展进程中,带宽的扩展主要集中在用户数据业务,数据业务的发展与经济、服务内容、用户的消费观念等息息相关,业务需求不确定性较大,PTN单环的带宽可达到GE/10GE,并可随时动态地对各种数据业务进行带宽调整,完全可以满足3G数据业务动态发展的需求。
3G时代的业务将更加丰富多彩,语音、视频、数据、组播业务等各种不同QoS需求的业务将在同一张网络中进行传送。相比传统的传送设备,PTN系统具备完善的业务类型识别手段和QoS灵活调度机制,可保证不同等级业务的服务质量。
(3)时钟同步的提供
PTN系统目前普遍采用的时钟同步技术方案有3种:基于物理层的同步以太网技术、基于分组包的TOP技术和IEEE1588v2技术。其中同步以太网技术和TOP技术都只能支持频率信号的传送,不支持时间信号的传送;IEEE1588v2技术采用主从时钟方案,对时间进行编码传送,时戳的产生由靠近物理层的协议层完成,利用网络链路的对称性和延时测量技术实现主从时钟的频率、相位和绝对时间的同步。利用这些技术,PTN可以实现高质量的网络同步,也可以解决3G基站回传中非常重要的时钟同步问题。
3.1.3OAM和保护倒换
基于T-MPLS的PTN具有强大的OAM功能和性能监控能力,基于PBB的PTN则借助EthernetOAM来实现OAM管理。因此,采用PTN组建3G传送网可以实现网络的电信级OAM能力。同时,PTN借鉴了SDH的环网和线性保护,可以保证50ms的业务保护倒换时间,使3G业务的传送更加高效、安全。
3.2PTN在3G传送网中的应用策略
就业务接口而言,3G网络中数据业务的比例将越来越高,需要的链路资源越来越多、越来越灵活,PTN可以提供E1和FE/GE数据接口。
就业务带宽而言,PTN目前环网带宽一般为GE/10GE,为3G新业务的开展奠定了一个优质的带宽基础。对于将来3G系统中HSDPA的应用,可以方便地进行业务的升级和网络的扩容。
就业务QoS保证而言,PTN的高带宽是由多用户共享,并提供资源预留、优先级、QoS保证,带宽可管理、可灵活分配,非常适合提供运营商级的服务。
就网络管理而言,采用PTN作为统一的业务承载平台,使得用一套管理系统对整个接入网络进行管理成为可能。
PTN与3G传送平台的典型组网如图2所示,PTN应用于宽带接入网,在提供各种基站业务传输的同时,提供基站所在区域的各种宽带业务接入,一网多用,将有利于宽带接入网的统一规划和管理,并且有利于在接入平台上提供各种高带宽的新型业务,为电信运营商带来新的利润增长点。
当然,PTN的相关技术和标准尚不完善,目前暂不具备大规模商用的条件,但是PTN集合了分组和SDH的优点,能够真正实现综合业务的接入,能够实现电信级的保护和OAM管理。从中长期来看,PTN不仅具备在3G传送平台上广泛应用的先天条件,而且能在整个城域网得到大范围的应用。
来源:电信科学
光纤在线公众号
更多猛料!欢迎扫描左方二维码关注光纤在线官方微信